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Laser-induced neutralization and negative-ion
formation in surface scattering

Kai-Shue Lam

Department of Physics, California State Polytechnic University
3801 West Temple Avenue, Pomona, California 91768

and

K. C. Liu and Thomas F. George

Department of Chemistry, University of Rochester
Rochester, New York 14627

Abstract

In neutralization and negative-ion formation from positive ions scattering from a solid
surface, a laser can be used to control the nature of resonant, near-resonant, and even non-
resonant transfer of electrons from the conduction band. These spectral characteristics can
be achieved by variation of only the laser frequency and intensity.

Introduction

Positive ions impacting on metal surfaces may pick up electrons resonantly or near-
resonantly from the conduction band and thus become neutral atoms or negatively-charged ions
on recoil. 1"6 These processes usually require that the empty valence level Cd (Figure 1)
of the impact-ion be roughly degenerate with the electrons in the conduction band when the
ion is in the impact region. If this condition is not fulfilled, neutralization or
negative-ion formation can only take place through the much weaker Auger processes.7 With
the introduction of a laser, however, the degeneracy condition ceases to be the determining
factor in charge transfer. By varying the laser frequency and intensity, the radiative
bound-continuum coupling can readily be manipulated so as to resonantly, near-resonantly, or
even non-resonantly transfer electrons from any region in the conduction band to the
discrete valence level.

Resonant and near-resonant transfers are effected through the formation of laser-induced
metastable states with energies within the band. The degree of resonance is determined by
the widths of these states, which, together with the energies, can be controlled by the
laser characteristics. Non-resonant transfer is due to the possible formation of a

ee

es Id>

Ficure 1. Schematic ener.y-level diagram for a model ion-surface system interacting with an
external laser field near the impact reqion, where I% is the photon energy. The kets denote
the states associated with the designated energy levels.



laser-induced bound state with energy below the lower band edqe u. This bound state appears
when the laser intensity is raised past a certain frequency-dependent critical value, and
the exact location of its energy Cb can also be controlled by the laser characteristics. Of
special interest in non-resonant transfer is the onset of the threshold effect when eb is
close to u, in which electrons are drawn predominantly from near the lower edge of the
conduction band.

In the present work, we shall focus on the system's spectral properties responsible for
the above effectse rather than the dynamics, which has been treated elsewhere.3-6, 9

Non-resonant transfer

We consider a model for the ion-surface system where field-free energy spectrum near the
impact-region is depicted in Figure 1. A radiative bound-continuum coupling V.( t), peaking
around the instant of impact t-0 is responsible for the transfer of electrons from the band
states It> to the valence state fd,w>. The quantity that is ultimately of interest is the
transfer probability

Pcd(t) - I<CId,wt>I2, (1)

where Id,wit> is the time-evolved state of Id,w>.

In order to determine Id,w;t>, it is useful to expand Id,w> in terms of approximate
eigenstates of the total Hamiltonian. We assume the impact velocity to be low enough such
that the adiabatic approximation is valid: the electronic spectrum can be diagonalized
independently at each t. The eigenvalue equation is then given by8

r 22" P(€) V Cw(t) 2

E It) - [cdt) +J + g2  dc-~~~~. M-01~) (2)
''

where g2 is a quantity proportional to the field intensity, P(t) is the density of states of
the band, and it has been assumed that the band is infinitely wide. This equation admits a
bound-state solution Cb(t) <U, when

2 2 ( - d )  ..... (3)
' crit +d) - U "

Furthermore, the position of this bound state shifts down as q2 is increased and/or wis
decreased.

Since this bound state, by definition, cannot be degenerate with the band and can act as
a receptor of electrons, it is the origin of a non-resonant transfer term occurring in
P It). An explicit expression [Eq.(8)] for this quantity will be given after we consider

source of the resonant and non-resonant transfer -- the metastable states -- in the next
section.

Resonant and near-resonant transfer

When the radiative coupling is weak, a monochromatic laser gives rise to a metastable
state centered at Cd+w+A with a width r0, where both the small shift A and r0 are propor-
tional to 92, or the physical field intensity. The presence of this state means that
electrons are transferred predominantly from an energy region in the band corresponding to
its location and width, hence the designations resonant and near-resonant transfer.

When the coupling is strong, the resonance structure for Pt( t) becomes much more
interesting. In this case the locations of the metastable states have to be determined from
the equation$

2(t) - [Cd(t)+w + g2 PEt)- 0 , (4)

P!(RtlJ -Pdc ( () t) 2()



with P denoting the principal-value integral. The roots of Eq. (4) in general bear no simple
relationship to the *unperturbed" line center Cd+w, and there may be more than one. Thus,
even a monochromatic laser may induce more than one resonance region in the conduction band
from which a preponderance of electron transfer takes place. Moreover, one can tune the
positions of these regions through the band by varying w and the field intensity.

There is another interesting complication when the radiative coupling is strong. It is
found that6 the width of a metastable state is not strictly proportional to g', but to a
Orenormalized field intensity"

2 - q2 p,(m)!, (6)

where P'(E) AP(E) EE (

and Lm is the position of a metastable state. For a given physical field intensity and
frequency, the conduction band may then be classified according to three regimes. The
metastable reaime (P'(E) > 01 has the property that the physical width of a metastable state
located witinit is always smaller than the *bare* width, while for the unstable regime
(-1 < g2p, < 0) the opposite is true. Finally, there may be an unphysica m
(g2p, < -1) where energies do not correspond to any physically observed states at all,
since gj in this regime is negative.

The electron-transfer spectrum

Neglecting complications due to the collision dynamics, an approximate formula revealing
the essential features of this spectrum can be obtained ass

2V_. ltl 2 + - 14 ( (8)

" - cb~ 11 i [C - hi(tJ + ri/4

where the sum is over the metastable states of energies Ei and ri is the physical width
given by

r - r0(Ei)/ (l+g
2P' (Ei )] (9)

Bb = + q2 ( (10)

The first term accounts for the main contributions to non-resonant transfer. It is due
entirely to the laser-induced bound state and is present only when the physical field in-
tensity is larger than a certain critical value [Eq.(3)]. Since eb is always less than V,
this term is especially significant near the threshold (c z ) region and contributes a long-
range non-resonant "tail" for large c. The crucial fact is that its importance can always
be enhanced by tuning Cb close to U. We call this the threshold effect due to non-resonant
transfer.

The summation term contains contributions to the resonant and near-resonant transfer.
Based on the discussion of the previous section, one can also effectively engineer" the
locations and widths of the resonance peaks. Within the metastable regime line narrowing
can be enhanced, while in the unstable regime line broadening is facilitated. Moreover, the
unphysical regime serves as a filter to block off certain regions of the band from electron
transfer.

We stress again that the unusual range of spectral phenomena described by Eq. (9) can all
be obtained by a judicious variation of the laser frequency and the physical intensity.

The Anderson correlation eneray U u10

We have shown elsewhere9 that the Anderson correlation energy U plays an important role
in the two-electron transfer process of negative-ion formation. Essentially, U arises from
the Coulomb repulsion between two electrons of opposite spin in the discrete valence level,
and imposes an energy barrier for the transfer of the second electron once the first elec-
tron has been .tansferred. This condition manifests itself in overall stricter resonance



requirements in resonant and near-resonant transfer than in the neutralization case. Hence,
in light of the uncertainty principle, short interaction times, or equivalently, large im-
pact velocities are in general favored.

The laser can again be tuned to advantage in this situation. Without arbitrarily in-
creasing the impact velocity of the positive ion, one can either make use of the bound state
to enhance the non-resonant part of the transfer, or make use of a *metastable" state in the
unstable regime to relax the resonance requirements, or use a suitable combination of the
two effects. If, in addition, one can *probe" the spectrum on very short-time scales (on
the order of typical collision times) so that resonance requirements are lax even in the
field-free case, the barrier effects of U may be largely overcome. This probing can again
be best achieved by a laser -- one with pulse durations on the order of collision times.
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